Averting Biodiversity

 Collapse in Tropical Protected Areas William F. Laurance Centre for Tropical Environmental and Sustainability Science James Cook University Cairns, Australia

Big Problem

Most data from remote sensing

DeFries et al. (2005): Increasing isolation of reserves Asner et al. (2005): Rampant logging in Amazonia
LaPorte et al. (2007): Logging explosion in Congo Basin Wright et al. (2007):
Corruption \& poverty promote fires in reserves
O Too little on-the-ground research, especially of broad-scale trends

Key Questions

- Will tropical nature reserves function as arks for
biodiversity and ecological
processes?
What is driving changes?

Research Design

Global survey of 60 tropical reserves

- 20 each in Africa, Asia, and Neotropics
- All tropical rainforest or woodland
- At least 10 publications/site
- Timeframe: ~20-30 years

Sampling expert knowledge

- 4-5 experts per site (262 total)
- Detailed questionnaire (10 pages)
- Interview (phone or face-to-face)
- Only responses with 'good' or 'high' confidence considered

Change Variables 031 guilds

- 23 largely forest-dependent
- 8 invading or disturbanceloving
21 environmental drivers
- Both inside \& outside PA

- Each response scored

$$
\begin{aligned}
-1 & =\text { decline } \\
0 & =\text { no change } \\
+1 & =\text { increase }
\end{aligned}
$$

- Mean calculated for each site (if data available)
- Means pooled across all sites
- Bootstrapping used to generate 95\% CI for overall mean
- If CI did not overlap with 0, then significant
- Bonferroni correction used ($P=0.0056$)

Good News

Highly Vulnerable Groups

Large, Non-predatory Species

Streamdwelling Amphibians

Stream Fish

Large-seeded Trees

Ecological Specialists

The Winners

Disturbance- and Lightloving Trees

Lianas \& Vines

Invasive Animals

Invasive Plants

Reserve Health Index

10 guilds both sensitive to degradation and whose fate is documented at most ($\geq 85 \%$) sites

6 disturbance-avoiders
 - 4 disturbance-lovers

- Apex predators
- Pioneer trees
- Large non-predatory species • Lianas \& vines
- Primates
- Exotic animals
- Understory insectivorous birds • Exotic plants
- Large frugivorous birds
- Large-seeded trees
- Mean score calculated, using negative values for disturbance-lovers

On Average, Reserve Health Is Declining

Taxonomically and functionally widespread erosion of biodiversity

Suffering Reserves

Succeeding Reserves

Top Correlates of Declining Reserve Health*

1) \downarrow Forest cover inside reserve
2) \uparrow NTFP harvests inside reserve
3) \uparrow Logging inside reserve
4) \downarrow Forest cover outside reserve
5) \uparrow Hunting inside reserve
6) \uparrow Fires outside reserve
7) \uparrow Logging outside reserve *All P<0.006, Spearman rank correlation

What makes a reserve happy?

- Protect it from internal habitat disruption (deforestation, fires, logging) and overexploitation (hunting, NTFP harvests)
- Manage the forest around the reserve (limit deforestation, fires, logging)
- Drivers such as pollution and climate change are of lesser importance

Conclusions

- Four-fifths of tropical reserves in our survey are deteriorating ecologically—and half seriously
- In the suffering reserves, erosion of biodiversity is taxonomically and functionally widespread
- Reserves that deteriorate least over time are those with the best on-theground protection
- Environmental changes inside and outside the reserve appear almost equally critical

