



# Measuring and predicting success in marine reserves

Graham Edgar
Rick Stuart-Smith
Amanda Bates
Stuart Campbell
German Soler

University of Tasmania









# Problems faced by managers of marine biodiversity

- 1. The marine environment is out of sight, hence we have a poor idea of its current state and the extent of impacts.
- 2. Without good spatial and temporal information on condition and threats to the marine environment, management is inefficient.





## Scientific problems

- Paucity of data on distribution of marine biodiversity
- Patchiness of data
- Variable quality of data
- Sliding baselines
- Marine ecological monitoring by scientific teams is expensive
- → access support of skilled recreational divers to generate broad-scale data (CERF Significant Project)





# Reef Life Survey

A program based around a team of skilled and enthusiastic volunteer SCUBA divers who undertake biodiversity monitoring of reefs in a standardised and scientifically rigorous manner

Directed by a steering committee of managers,

divers and scientists













Reef Life Survey website www.reeflifesurvey.com



## RLS subtidal survey methodology



Mobile macroinvertebrates and cryptic fishes:

50 m<sup>2</sup> transect 1m distance each side of the line

Plants and sessile invertebrates: 20 photoquadrats







#### Methods – underwater visual census



FISHES: recorded within duplicate 50 m x 5 m belt transects



MACROINVERTEBRATES: recorded within duplicate 50 m x 1 m blocks



CORAL/MACROALGAE cover: photoquadrats taken at 2.5 m intervals along transect

- archived within the database
- digitised as needed







# Diver training

- Intensive training both above and below water
- One to one assistance with technique, IDs
- Importance of data entry emphasised



























#### Characteristics of RLS dataset

- Systematic methodology
- Quantitative
- Three functional components
- Thousands of species
- Global in span
- Long term
- Covers all mobile taxa >2 cm









## Number of IUCN threatened species

| PHYLUM        | CR | EN | VU | LC  | NT | DD | NA   | Total | Threate | Threate | NA    |
|---------------|----|----|----|-----|----|----|------|-------|---------|---------|-------|
| Global        |    |    |    |     |    |    |      |       | %       | %       | %     |
| Arthropoda    |    |    |    | 15  |    | 5  | 152  | 172   | 0       | 0       | 88.37 |
| Chordata      | 2  | 13 | 41 | 757 | 42 | 59 | 1498 | 2412  | 2.322   | 6.127   | 62.11 |
| Echinodermata |    |    |    | 1   |    |    | 336  | 337   | 0       | 0       | 99.7  |
| Mollusca      |    | 1  | 2  | 9   | 1  | 7  | 601  | 621   | 0.483   | 15      | 96.78 |
| Grand Total   | 2  | 14 | 43 | 782 | 43 | 71 | 2587 | 3542  | 1.666   | 6.178   | 73.04 |













#### All species



MEOW Measured & Predicted: All Alpha 7 - 11 12 - 16 17 - 23 24 - 31 32 - 50 No Data

#### Bony fishes



Actinopterygii MEOW <VALUE> 2 - 7.7 7.8 - 18.3 18.4 - 29.3 29.4 - 39.7 39.8 - 58.2 No Data

#### Sharks and rays



Chondrichthyes MEOW <VALUE> -0.011 - -0.0038 -0.0037 - 0.0055 0.0056 - 0.02 0.021 - 0.043 0.044 - 0.1 No Data

#### Reptiles



**Reptilia MEOW** -0.01 - -0.009 -0.008 - -0.007 -0.006 - -0.004 -0.003 - 0.002 0.003 - 0.019 No Data





#### Sea urchins Sea stars



# Echinoidea MEOW <VALUE> 0.015 - 0.24 0.25 - 0.44 0.45 - 0.7 0.71 - 1.1 1.2 - 1.8 No Data Holothurians



Crinoidea MEOW <VALUE> -0.018 - 0.016 0.017 - 0.053 0.054 - 0.1 0.11 - 0.19 0.2 - 0.43 No Data

Asteroidea MEOW <VALUE> 0.0000051 - 0.16 0.17 - 0.51 0.52 - 0.96 0.97 - 1.5 1.6 - 3.2 No Data Crinoids

Holthuroidea MEOW <VALUE> 0.002 - 0.031 0.032 - 0.064 0.065 - 0.11 0.111 - 0.186 0.187 - 0.437 No Data





## Biomass large (>25 cm) fishes







# Key attributes of Marine Protected Areas ("NEOLI MPAs")

- 1. No-take
- 2. Enforced
- 3. Old
- 4. Large
- 5. Isolated











## Global MPA analysis – large fish biomass













# Biomass response of different trophic and body size groups in effective MPAs relative to fished sites









### Biomass response of different fish families in MPAs with various gear restrictions







#### Conclusions

- 1. Most MPAs worldwide cannot be distinguished ecologically from fished areas.
- 2. Some MPAs are extremely effective.
- 3. Conservation benefits of MPAs increase exponentially with the accumulation of five key features no-take, well-enforced, old (>10 years), large (>100 km²), and isolated by deep water or sand.
- 4. MPAs with all five key features had twice as many large (>25 cm) fish species per transect, nine times more large fish biomass, and 39 times more sharks than fished areas.
- 5. Fish biomass has been reduced by over two-thirds on fished reefs worldwide compared to effective MPAs.
- 6. The five key MPA features vary in their influence on different elements of the reef fish community.
- 7. More emphasis is needed on better MPA design, durable management, and compliance to ensure MPAs achieve their full conservation value.





# Value of marine biodiversity baseline will increase every year!









# **Thanks**



- Project Staff
  - Rick Stewart-Smith, Antonia Cooper, Marlene Davey, Jemina Stewart-Smith
- Students
  - Liz Oh, Amelia Fowles, Tim Alexander, Fiona Scott, German Soler, Tim Crawford, Anna Cresswell
- RLS Steering Committee
  - Neville Barrett, Andrew Green, Alan Jordan, Bryan McDonald, Ian Shaw, Scoresby Shepherd, Amanda Parr, Margot Smith, Danny Brock, Steffan Howe, Tom Holmes
- Volunteer RLS divers, particularly
  - Bill Barker, James Brook, Tom Davis, Paul Day, Andrew Green, Don Love, Ian Shaw, Kevin Smith, Margo Smith and Ashley Smith