

Connecting wetland conservation and livelihoods: the case of Lake Chilika

Dr. Ritesh Kumar, Wetlands International South Asia Ward Hagemeijer, Wetlands International

Chilika

Chilika

Hotspot of biodiversity
211 bird species; largest Irrawaddy Dolphin population; 217 fish species

Chilika

Livelihood base of 200,000 fishers and 400,000 farmers

Chilika: Riverine and Coastal Processes

Dynamics of water, sediment, nutrient and species exchange defines biodiversity and ecosystem services of wetland

Chilika: Riverine and Coastal Processes

314 fish species (64 true freshwater, 94 marine and 156 brackish water species); 29 species of prawn; 35 species of crab

62 species contribute to the commercial landing

Lake degradation

Choking of mouth to the sea

Dominance of freshwater environment

Included in Montreaux Record in 1993

Creating Strategic Partnerships

Research Institutions

NIO, Goa
CWPRS, Pune
IIT, Madras
CIFRI, Kolkata
NRSA, Hyderabad
BNHS, Bombay
ZSI
BSI
Utkal University
Berhampur University
CDS, Bhubaneswar
KIIT, Bhubaneswar

International and National Organizations

Wetlands International
Ramsar Centre, Japan
JICA, Japan
JFGE, Japan
DHI, Denmark
Ministry of Environment and Forests, India
Space Application Centre, India
ICMAMPD, Chennai
ICZMPD, Bhubaneswar

Chilika Development Authority

Community Based and Non Governmental Organizations

NISER, Bhubaneswar

Bird Protection Committee
CCCL, Chilika
Centre for Environment Education
Primary Fishermen Cooperative Societies
Watershed Communities
Wildlife Orissa
Women Self Help Groups

State Government Departments and Agencies

Department of Agriculture

Department of Fisheries and Animal Resources Development

Department of Revenue and Disaster Management

Department of Water Resources

Orissa Remote Sensing Application Centre

Hydrological Intervention - 2000

Reviving ecology

Communicating Chilika

Observed Dissolved Oxygen Threshold Dissolved Oxygen [% saturation] High: 100 Low: 0 Observed Chlorophyll (µg/l) Threshold Chlorophyll High: 10.99 High: >20 Low: 1.01 Low: 0 Observed Water Transparency (m) Threshold Water Transparency High: 10.99 ow : 2.01 Low: <2

What do the grades mean?

All water quality and biological health indicators meet desired levels. Quality of water in these locations tends to be very good, most often leading to very good habitat conditions for fish and shellfish.

Most water quality and biological health indicators meet desired levels. Quality of water in these locations tends to be good, often leading to good habitat conditions for fish and shellfish

There is a mix of good and poor levels of water quality and biological health indicators. Quality of water in these locations tends to be fair, leading to fair habitat conditions for fish and shellfish

Some or few water quality and biological health indicators meet desired levels. Quality of water in these locations tends to be poor, often leading to poor habitat conditions for fish and shellfish.

Very few or no water quality and biological health indicators meet desired levels. Quality of water in these locations tends to be very poor, most often leading to very poor habitat conditions for fish and shellfish.

Flow perceptions

Structural Engineers

Reduced flows ->
Reduced silt ->
Longevity of wetland
systems

Fishers

Floods - > Flush the system and keep mouth open -> high fish productivity

Farmers

Floods - > bring silt - > high agricultural productivity

Embankments create waterlogging

Scientific measurements

Anecdotal

Economic arguments to safeguard flows for a living delta

 Incremental cost benefit analysis indicated annual loss of US\$ 604 million due to proposed reduction in freshwater flows by 60%

 Maintaining present levels of freshwater flows gives annual benefit of US\$ 10,930 million through fisheries and agriculture

Sharing restoration benefits

- Regulating destructive fishing through Chilika Fisheries Rules
- Building capacity of Fisher Cooperatives
- Incentives -> better storage systems for higher values
- Conservation strategies, participatory mapping of fish migratory routes
- Institutional strengthening for 'responsible fisheries'

Integrated management planning

Community & Stakeholder Participation

In Conclusion

Connecting wetland conservation and livelihoods: the case of Lake Chilika

For more information, contact ritesh.kumar@wi-sa.org ward.hagemeijer@wetlands.org

@WetlandsInt

Wetlands International

