

The role of TEEB in assessing the socio-economic benefits of protected areas

Marianne Kettunen

Senior Policy Analyst

Institute for European Environmental Policy, IEEP

18 Nov 2014
Sydney, Australia

The next 15 minutes...

- I. What is 'TEEB'?
- II. TEEB approach to valuation & protected areas
- III. Current and upcoming in the world of TEEB

TEEB

TEEB genesis and development ...

G8+5 **Potsdam** "Potsdam Initiative – Biological Diversity 2010"

The economic significance of the global loss of biological diversity Importance of recognising, demonstrating & responding to values of nature Engagement: ~500 authors, reviewers & cases from across the globe

Ecol./Env. **Economics** literature

TEEB End User Reports Brussels 2009, London 2010

TEEB Books

National/subnational/region al studies

> Thematic studies

Natural Capital Accounting

Capacitybuilding & outreach

- 1. Recognizing value
- 2. Demonstrating value
- 3. Capturing value

Sukhdev, P., Wittmer, H., and Miller, D. (2014) 'The Economics of Ecosystems and Biodiversity (**TEEB**): **Challenges and Responses**', in D. Helm and C. Hepburn (eds), *Nature in the Balance: The Economics of Biodiversity*. Oxford: Oxford University Press.

SOMETIMES <u>RECOGNIZING</u> SOCIO-ECONOMIC VALUE IS ENOUGH.

- **Situation:** business initiative for a private hydro plant in a small water catchment (San José, Costa Rica)
- Recognition: water quality and availability depends on the landuse within the catchment
- Outcome: integrity of the catchment's water circulation sustained by payments to landowners as compensation for sust. management practices.

SOMETIMES <u>DEMONSTRATING</u> (ECONOMIC) VALUE IS / COULD BE BENEFICIAL.

- **Situation:** Plans to drain the Nakivubo Swamp (Kampala, Uganda) (>40 km²) for agriculture.
- Assessment: Waste water treatment & nutrient retention capacity of the swamp was assessed. Maintaining wetland (vs. manmade solutions) resulted in benefits worth ~1 1.75 million \$ / year. Also ~2 million \$ / year avoided costs of running a sewage treatment facility.
- Outcome: Plans for draining the wetland were abandoned and Nakivubo Swamps gazetted as protected area.

CAPTURING (ECONOMIC) VALUE IN POLICIES & VIA INSTRUMENTS.

- Situation: Vittel natural mineral water (FR)
 depends on high quality water from
 Vosges Mountains (no pre-treatment
 allowed by law).
- Assessment: Costs of managing upstream ecosystems in a manner that guarantees continued supply of clean water are lower than the costs of moving the sourcing of water elsewhere.
- Outcome: Farmers upstream are paid to adopt best low-impact farming practises.

Start with a question – define your purpose

- What is the motive for / purpose of assessment ?
- → This helps to determine scope, methods, communication etc.
- Possible motive(s)?
- → Understanding, awareness and advocacy
- → Support to decision-making and management (PA zoning, optimising benefits from multiple sites etc.)
- → Identifying and assessing social impacts
 (Benefits with non-market value, equity between beneficiaries etc.)
- → Mobilising funds

Practice: advocacy

Advocacy:

Highlighting socio-economic benefits can improve policy / stakeholder support to PAs

- Regional revenue streams generated by visits to Finnish national parks assessed (<u>Metsahallitus 2011 onwards</u>)
- 1 EUR investment results in 10 EUR return
- Assessment of benefits played an important role in preventing budget cuts at national level (See for example <u>Kajala 2012</u>)

Practice: PA management

Management:

Understanding of benefits can advice designation, zoning, setting conservation goals, updating management methods etc.

- 80% of drinking water in Quito
 (Ecuador) is provides by surrounding
 PAs
- Information on PAs' role in water retention and purification have been used to establish specific objectives, zones and tools for water management within PAs (Canales and Jouravlev 2012 in <u>Kettunen and ten Brink 2013</u>)

plettre 0

Practice: equity

Equity:

Assessment of benefits helps identify and address all beneficiaries (inc. where there is no market value)

- Assessment in Küre
 Mountains NP (<u>Turkey</u>)
 showed how different
 stakeholders perceive
 benefits / values
 differently
- Used as background information for management planning and basis for park's business plan

Practice: funding for PAs

Financing:

Understanding of benefits can help attracting funding

- Public funding via increased support
- New types of funding (PES, business partnerships etc.)

- Public benefits by Burren NP (<u>Ireland</u>) much higher than associated costs
- → 235% min rate of return on government investment (<u>van</u> Rensburgh et al. 2009)
- Assessment played role in securing funding (eg EU agri-env. funding)
- Several PES schemes on PAs exist globally (eg in Quito, see earlier example)

TEEB for Agriculture and Food

STUDY OBJECTIVE

"This study is designed to provide a comprehensive economic evaluation of the 'eco-agri-food systems' complex, and demonstrate that the economic environment in which farmers operate is distorted by significant externalities, both negative and positive, and a lack of awareness of dependency on natural capital. A 'double-whammy' of economic invisibility of impacts from both ecosystems and agricultural & food systems is a root cause of increased fragility and lower resilience to shocks in both ecological and human systems."

The Economics of Ecosystems & Biodiversity **Human (Economic & Social) systems** ATMOSPHERE/CLIMATE **Breeding Fertilizer CLIMATE** = Invisible costs **Energy** Machinery **Appropriation** Irrigation Invisible benefits CO₂ Health **Pollution Pesticides** Air externalities Visible benefits externality **Bio-technology** PHYSICAL- CHEMICAL **GHG/climate** Labor Inputs (science & externality Technology) **Agricultural & Food systems** Food Raw **Materials** Agro-SOIL touris_m **STRUCTURE SEED** Cultural Heritage **PLANT YIELD** TO THE WALL TO SHE WAS TO BE CARE SEVEN Habitat encroachment Soil Substrate **Nutrient** Loss of ecosystem complexity Moderation Pest **Species reduction** control Genetic of extreme events variability **Erosion** Soil erosion **Decomposition** Soil creation Water prevention Other (i.e. unknown) purification Nutrient **Carbon fixation** impacts **Pollination** recycling **Biodiversity & Ecosystems**

Edited by Marianne Kettunen and Patrick ten Brink

SOCIAL AND ECONOMIC BENEFITS OF PROTECTED AREAS

An Assessment Guide

Thank you!

Marianne Kettunen
Senior Policy Analyst IEEP
mkettunen@ieep.eu

IEEP is an independent, not-for-profit institute dedicated to the analysis, understanding and promotion of policies for a sustainable environment in Europe.

www.ieep.eu

@IEEP eu